Publications

* and ¶ indicate equal contribution by representing co-first and co-corresponding authors, respectively.

2024

  1. NeurIPS-W
    Discovering Multi-Layer Films for Electromagnetic Interference Shielding and Passive Cooling with Multi-Objective Active Learning
    Mingxuan Li, Jungtaek Kim, and Paul W. Leu
    In Neural Information Processing Systems Workshop on AI for Accelerated Materials Discovery (AI4Mat), 2024
  2. Model Fusion through Bayesian Optimization in Language Model Fine-Tuning
    Chaeyun Jang*, Hyungi Lee*, Jungtaek Kim¶, and Juho Lee¶
    In Advances in Neural Information Processing Systems (NeurIPS), 2024
    Spotlight Presentation
  3. TMLR
    Budget-Aware Sequential Brick Assembly with Efficient Constraint Satisfaction
    Seokjun Ahn*, Jungtaek Kim*Minsu Cho, and Jaesik Park
    Transactions on Machine Learning Research, 2024
  4. Exploiting Preferences in Loss Functions for Sequential Recommendation via Weak Transitivity
    Hyunsoo Chung, Jungtaek Kim, Hyungeun Jo, and Hyungwon Choi
    In Proceedings of the ACM International Conference on Information and Knowledge Management (CIKM), 2024
    Short Research Paper Track
  5. Noise-Adaptive Confidence Sets for Linear Bandits and Application to Bayesian Optimization
    Kwang-Sung Jun, and Jungtaek Kim
    In Proceedings of the International Conference on Machine Learning (ICML), 2024
  6. Minimizing Annual Reflection Loss in Fixed-Tilt Photovoltaic Modules Using Graded Refractive Index (GRIN) Anti-Reflective Glass
    Karinna Martin, Katie Shanks, Yipeng Liu, Jungtaek Kim, Sajad Haghanifar, Mehdi Zarei, Sooraj Sharma, and Paul W. Leu
    Solar Energy, 2024
  7. Flexible Embedded Metal Meshes by Sputter-Free Crack Lithography for Transparent Electrodes and Electromagnetic Interference Shielding
    Mehdi Zarei, Mingxuan Li, Elizabeth E. Medvedeva, Sooraj Sharma, Jungtaek Kim, Zefan Shao, S. Brett Walker, Melbs LeMieux, Qihan Liu, and Paul W. Leu
    ACS Applied Materials & Interfaces, 2024
  8. Generalized Neural Sorting Networks with Error-Free Differentiable Swap Functions
    Jungtaek Kim, Jeongbeen Yoon, and Minsu Cho
    In Proceedings of the International Conference on Learning Representations (ICLR), 2024
  9. Digit. Discov.
    Multi-BOWS: Multi-Fidelity Multi-Objective Bayesian Optimization with Warm Starts for Nanophotonic Structure Design
    Jungtaek Kim, Mingxuan Li, Yirong Li, Andrés Gómez, Oliver Hinder, and Paul W. Leu
    Digital Discovery, 2024

2023

  1. NeurIPS-W
    Model Fusion through Bayesian Optimization in Language Model Fine-Tuning
    Chaeyun Jang, Jungtaek Kim, Hyungi Lee, and Juho Lee
    In Neural Information Processing Systems Workshop on Efficient Natural Language and Speech Processing (ENLSP), 2023
  2. NeurIPS-W
    Leveraging Uniformity of Normalized Embeddings for Sequential Recommendation
    Hyunsoo Chung, and Jungtaek Kim
    In Neural Information Processing Systems Workshop on Self-Supervised Learning - Theory and Practice (SSL-TP), 2023
  3. JOSS
    BayesO: A Bayesian Optimization Framework in Python
    Jungtaek Kim, and Seungjin Choi
    Journal of Open Source Software, 2023
  4. Datasets and Benchmarks for Nanophotonic Structure and Parametric Design Simulations
    Jungtaek Kim, Mingxuan Li, Oliver Hinder, and Paul W. Leu
    In Advances in Neural Information Processing Systems (NeurIPS), 2023
    Datasets and Benchmarks Track
  5. Generative Neural Fields by Mixtures of Neural Implicit Functions
    Tackgeun You, Mijeong Kim, Jungtaek Kim, and Bohyung Han
    In Advances in Neural Information Processing Systems (NeurIPS), 2023

2022

  1. Combinatorial Bayesian Optimization with Random Mapping Functions to Convex Polytopes
    Jungtaek KimSeungjin Choi¶, and Minsu Cho¶
    In Proceedings of the Annual Conference on Uncertainty in Artificial Intelligence (UAI), 2022
  2. IJCAI
    Learning to Assemble Geometric Shapes
    Jinhwi Lee*, Jungtaek Kim*, Hyunsoo Chung, Jaesik Park, and Minsu Cho
    In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), 2022
  3. On Evaluation Metrics for Graph Generative Models
    Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, and Graham W. Taylor
    In Proceedings of the International Conference on Learning Representations (ICLR), 2022
  4. On Uncertainty Estimation by Tree-based Surrogate Models in Sequential Model-based Optimization
    Jungtaek Kim, and Seungjin Choi
    In Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS), 2022

2021

  1. Brick-by-Brick: Combinatorial Construction with Deep Reinforcement Learning
    Hyunsoo Chung*, Jungtaek Kim*, Boris Knyazev, Jinhwi Lee, Graham W. Taylor, Jaesik Park, and Minsu Cho
    In Advances in Neural Information Processing Systems (NeurIPS), 2021
  2. MLJ
    Bayesian Optimization with Approximate Set Kernels
    Jungtaek Kim, Michael McCourt, Tackgeun You, Saehoon Kim, and Seungjin Choi
    Machine Learning, 2021

2020

  1. NeurIPS-W
    Combinatorial 3D Shape Generation via Sequential Assembly
    Jungtaek Kim, Hyunsoo Chung, Jinhwi Lee, Minsu Cho, and Jaesik Park
    In Neural Information Processing Systems Workshop on Machine Learning for Engineering Modeling, Simulation, and Design (ML4Eng), 2020
  2. NeurIPS-W
    Fragment Relation Networks for Geometric Shape Assembly
    Jinhwi Lee*, Jungtaek Kim*, Hyunsoo Chung, Jaesik Park, and Minsu Cho
    In Neural Information Processing Systems Workshop on Learning Meets Combinatorial Algorithms (LMCA), 2020
  3. Bootstrapping Neural Processes
    Juho Lee*, Yoonho Lee*, Jungtaek Kim, Eunho Yang, Sung Ju Hwang, and Yee Whye Teh
    In Advances in Neural Information Processing Systems (NeurIPS), 2020
  4. ECML-PKDD
    On Local Optimizers of Acquisition Functions in Bayesian Optimization
    Jungtaek Kim, and Seungjin Choi
    In Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD), 2020

2019

  1. ICML-W
    Bayesian Optimization over Sets
    Jungtaek Kim, Michael McCourt, Tackgeun You, Saehoon Kim, and Seungjin Choi
    In International Conference on Machine Learning Workshop on Automated Machine Learning (AutoML), 2019
  2. Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks
    Juho Lee, Yoonho Lee, Jungtaek Kim, Adam R. Kosiorek, Seungjin Choi, and Yee Whye Teh
    In Proceedings of the International Conference on Machine Learning (ICML), 2019
  3. Practical Bayesian Optimization with Threshold-Guided Marginal Likelihood Maximization
    Jungtaek Kim, and Seungjin Choi
    arXiv preprint arXiv:1905.07540, 2019
  4. MxML: Mixture of Meta-Learners for Few-Shot Classification
    Minseop Park, Jungtaek Kim, Saehoon Kim, Yanbin Liu, and Seungjin Choi
    arXiv preprint arXiv:1904.05658, 2019

2018

  1. NeurIPS-W
    TAEML: Task-Adaptive Ensemble of Meta-Learners
    Minseop Park, Saehoon Kim, Jungtaek Kim, Yanbin Liu, and Seungjin Choi
    In Neural Information Processing Systems Workshop on Meta-Learning (MetaLearn), 2018
  2. ICML-W
    Automated Machine Learning for Soft Voting in an Ensemble of Tree-based Classifiers
    Jungtaek Kim, and Seungjin Choi
    In International Conference on Machine Learning Workshop on Automatic Machine Learning (AutoML), 2018
  3. ICASSP
    Open Set Recognition by Regularising Classifier with Fake Data Generated by Generative Adversarial Networks
    Inhyuk Jo, Jungtaek Kim, Hyohyeong Kang, Yong-Deok Kim, and Seungjin Choi
    In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2018
  4. ICASSP
    Clustering-Guided GP-UCB for Bayesian Optimization
    Jungtaek Kim, and Seungjin Choi
    In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2018
  5. AAAI
    On the Optimal Bit Complexity of Circulant Binary Embedding
    Saehoon Kim, Jungtaek Kim, and Seungjin Choi
    In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 2018

2017

  1. NeurIPS-W
    Learning to Transfer Initializations for Bayesian Hyperparameter Optimization
    Jungtaek Kim, Saehoon Kim, and Seungjin Choi
    In Neural Information Processing Systems Workshop on Bayesian Optimization (BayesOpt), 2017
  2. Learning to Warm-Start Bayesian Hyperparameter Optimization
    Jungtaek Kim, Saehoon Kim, and Seungjin Choi
    arXiv preprint arXiv:1710.06219, 2017

2016

  1. ICML-W
    AutoML Challenge: AutoML Framework Using Random Space Partitioning Optimizer
    Jungtaek Kim, Jongheon Jeong, and Seungjin Choi
    In International Conference on Machine Learning Workshop on Automatic Machine Learning (AutoML), 2016