
AutoML 2018

Automated Machine Learning for Soft Voting
in an Ensemble of Tree-based Classifiers

Jungtaek Kim jtkim@postech.ac.kr and Seungjin Choi seungjin@postech.ac.kr

Pohang University of Science and Technology, Pohang 37673, Republic of Korea

Abstract

We elucidate our automated machine learning system, referred to as mlg.postech, which
ranked second in AutoML Challenge 2018 that was held as the data competition at
PAKDD-2018. Our system focuses on an automated construction of ensemble classifiers,
employing the Bayesian optimization to determine weights in the soft voting classifier as
well as hyperparamters involving base classifiers. As base classifiers, we use three tree-
based models, including gradient boosting, extra-trees and random forests classifiers. Our
implementation uses tree-based classifiers provided by scikit-learn, as well as our own
Bayesian optimization package for sequential optimization of hyperparameters in the en-
semble of tree-based classifiers. Empirical results on the AutoML Challenge 2018 datasets
are presented to demonstrate the useful behavior of our system.

Keywords: Automated machine learning, Bayesian optimization, ensemble classifiers,
tree-based classifiers, voting classifiers.

1. Introduction

Automated machine learning attempts to find automatically the optimal machine learning
model without human intervention (Guyon et al., 2015). It usually includes algorithm
selection and hyperparameter optimization, as well as model parameter learning. Note that
A and Λ are an algorithm space and a hyperparameter space, respectively. Given a training
dataset Dtrain = {Xtrain,ytrain} and a validation dataset Dval = {Xval,yval}, an automated
machine learning system finds the optimal algorithm vector A∗ ∈ A and hyperparameter
vector λ∗ ∈ Λ:

(A∗,λ∗) = AutoML(Dtrain,Dval,A,Λ) (1)

where AutoML is an automated machine learning system over Dtrain, Dval, A, and Λ (see
Section 3 for the details).

The previous works (Hutter et al., 2011; Snoek et al., 2012; Feurer et al., 2015) have
employed Bayesian optimization in hyperparameter optimization and automated machine
learning, because Bayesian optimization is a global optimization method for black-box func-
tion. Especially, most participants of the previous AutoML Challenge (Guyon et al., 2016;
Kim et al., 2016) utilized Bayesian optimization in automated machine learning system.
Moreover, a hyperparameter optimization company, SigOpt uses Bayesian optimization in
their optimization service (Martinez-Cantin et al., 2018).

c© 2018 J. Kim & S. Choi.



AutoML for Soft Voting in an Ensemble of Tree-based Classifiers

Our automated machine learning system1, which is referred to as mlg.postech2, finds an
appropriate machine learning model using Bayesian optimization. In particular, our sys-
tem focuses on tree-based classifiers: gradient boosting classifier, extra-trees classifier, and
random forests classifier, because they usually outperform for various datasets. We build a
soft majority voting model, an ensemble of the tree-based classifiers, the hyperparameters
of which are automatically tuned by Bayesian optimization. In practice, some machine
learning models such as tree-based classifiers in our system are implemented by a Python
machine learning package, scikit-learn (Pedregosa et al., 2011). Moreover, their hyper-
parameters are optimized by our own Bayesian optimization package, which is included in
our system repository. Finally, our system, mlg.postech took second place of AutoML Chal-
lenge 2018, which was held as the 22nd Pacific-Asia Conference on Knowledge Discovery
and Data Mining (PAKDD-2018) data competition.

First, we introduce an ensemble method used in our system and Bayesian optimization
which optimizes the hyperparameters in Section 2. Next, we present our automated ma-
chine learning system, mlg.postech in Section 3 and the AutoML Challenge 2018 result in
Section 4.

2. Background

We will briefly introduce majority voting and Bayesian optimization in the subsequent
section.

2.1. Majority Voting

Majority voting is an ensemble method to construct a classifier using a majority vote of
k base classifiers. It has two types: hard voting and soft voting. For a hard voting, each
base classifier has one vote (i.e. wj = 1) if uniform weight is given, and wj ∈ N ≥ 1 votes if
occurrence of base classifier j is given. Class assignment of instance i for 1 ≤ i ≤ n is

ci = arg max

k∑
j=1

wjc
(j)
i

where n is the number of instances, arg max returns an index of maximum value in given

vector, wj ∈ N ≥ 1 is a weight of base classifier j, and c
(j)
i is a class assignment of base

classifier j (i.e. one-hot vector).
Each base classifier of soft voting classifier contributes class probabilities with given

weights for all classes. Class assignment of soft voting classifier is

ci = arg max

k∑
j=1

wjp
(j)
i

1. https://github.com/jungtaekkim/automl-challenge-2018
2. narnars0 in AutoML Challenge 2018 leaderboard (https://competitions.codalab.org/competitions/

17767#results). To represent our system precisely, we solely use mlg.postech as the name of our system
and our team in this paper.

2

https://github.com/jungtaekkim/automl-challenge-2018
https://competitions.codalab.org/competitions/17767#results
https://competitions.codalab.org/competitions/17767#results


AutoML for Soft Voting in an Ensemble of Tree-based Classifiers

Dataset

Automated Machine Learning System

Voting Classifier

Gradient Boosting
Classifier

Extra-trees
Classifier

Random Forests
Classifier

Bayesian Optimization

Prediction

Figure 1: Our automated machine learning system, mlg.postech. Voting classifier which is
constructed by three tree-based classifiers: gradient boosting classifier, extra-trees classifier,
and random forests classifier produces predictions, where voting classifier and tree-based
classifiers are iteratively optimized by Bayesian optimization for time budget (red arrows).

where wj ∈ R ≥ 0 is a weight of base classifier j, and p
(j)
i is a class probability vector of

base classifier j. In our system, we employ the soft majority voting classifier as an ensemble
method.

2.2. Bayesian Optimization

Bayesian optimization is a useful method to find global minimum or maximum for black-
box function (Brochu et al., 2010). It improves the current best solution as iterating the
following steps: modeling a surrogate function and acquiring a next point that has maximum
value of acquisition function. Because a target function is black-box, we model a surrogate
function using a regression method that also produces an uncertainty, such as Gaussian
process regression (Jones et al., 1998), random forests regression (Hutter et al., 2011), and
Bayesian neural networks (Springenberg et al., 2016). Next, an acquisition function instead
of an original target function is optimized. Generally, the acquisition function balances
function estimate and uncertainty estimate. For example, one of the widely used acquisition
functions, Gaussian process upper confidence bound (GP-UCB) (Srinivas et al., 2010) for
a minimization case is

aUCB(x) = −µ(x) + κσ(x)

where µ(x) and σ(x) are posterior mean and posterior standard deviation functions over
x, respectively. κ is a balancing hyperparameter for posterior mean function and posterior
standard deviation function. In our system, Gaussian process regression and GP-UCB are
used as surrogate model and acquisition function.

3. Our Automated Machine Learning System, mlg.postech

We implement our automated machine learning system, written in Python, with a machine
learning package, scikit-learn and our Bayesian optimization package. As shown in
Fig. 1, a soft voting classifier as an ensemble model, which is constructed by three tree-based
classifiers: gradient boosting classifier, extra-trees classifier, and random forests classifier is

3



AutoML for Soft Voting in an Ensemble of Tree-based Classifiers

Table 1: Datasets of feedback phase in AutoML Challenge 2018. Train. #, Valid. #, Test
#, Feature #, Chrono., and Budget stand for training dataset size, validation dataset size,
test dataset size, the number of features, chronological order, and time budget, respectively.
Time budget shows in seconds.

Dataset Train. # Valid. # Test # Feature # Chrono. Budget

ada 4,147 415 41,471 48 False 600
arcene 100 100 700 10,000 False 600
gina 3,153 315 31,532 970 False 600
guillermo 20,000 5,000 5,000 4,296 False 1,200
rl 31,406 24,803 24,803 22 True 1,200

used to predict labels of input dataset. Because we specify our system to a single ensemble
model, A∗ in Eq. (1) is fixed.

As we explained before, our system has some components (see Fig. 1), which are con-
trolled by six hyperparameters (now, we can think Λ in Eq. (1) as a six-dimensional space):
(i) extra-trees classifier weight/gradient boosting classifier weight for voting classifier, (ii)
random forests classifier weight/gradient boosting classifier weight for voting classifier, (iii)
the number of estimators for gradient boosting classifier, (iv) the number of estimators for
extra-trees classifier, (v) the number of estimators for random forests classifier, and (vi)
maximum depth of gradient boosting classifier. Each hyperparameter is constrained and
searched in the pre-defined range, which is set by one of four conditions: (i) large dataset
size and large feature dimensions (we do not pass Bayesian optimization step for this con-
dition and fit with the whole training dataset directly, due to time budget limitation.), (ii)
small dataset size and large feature dimensions, (iii) dataset which has a chronological order,
and (iv) otherwise (see our open repository to check the detailed conditions and pre-defined
ranges).

Bayesian optimization with the acquisition function, GP-UCB optimizes the hyperpa-
rameters of our system. To optimize our system without validation and test datasets, we
first split training dataset to training and validation datasets for Bayesian optimization,
Dtrain and Dval in Eq. (1) (e.g. 0.60 of training dataset as training dataset for Bayesian
optimization and 0.40 of training dataset as validation dataset for Bayesian optimization).
Bayesian optimization in our system iteratively finds the model that shows the best per-
formance measure for the given time budget. Finally, if the system leaves time to be able
to run one loop (including time margin), our system fits the final machine learning model
with the whole training dataset and the hyperparameters which produce the current best
model.

4. Challenge Result

AutoML Challenge 2018 is a competition for automating a machine learning pipeline, includ-
ing feature transformation, algorithm selection, hyperparameter optimization, and model
parameter learning, where dataset and machine learning task are given. We will describe
the details and result of AutoML Challenge 2018 in the following section.

4



AutoML for Soft Voting in an Ensemble of Tree-based Classifiers

Table 2: AutoML Challenge 2018 result. Our system, mlg.postech took second place in the
challenge. A normalized area under the ROC curve (AUC) score (upper cell in each row)
is computed for each dataset, and a dataset rank (lower cell in each row) is determined by
numerical order of the normalized AUC score. Finally, an overall rank is determined by the
average rank of five datasets.

Place Team Set 1 Set 2 Set 3 Set 4 Set 5 Average

1 aad freiburg
0.5533 0.2839 0.3932 0.2635 0.6766

2.8
(3) (4) (1) (1) (5)

2 mlg.postech
0.5418 0.2894 0.3665 0.2005 0.6922

3.8
(5) (2) (2) (9) (1)

3

wlWangl
0.5655 0.4851 0.2829 -0.0886 0.6840

5.4
(2) (1) (5) (16) (3)

thanhdng
0.5131 0.2256 0.2605 0.2603 0.6777

5.4
(6) (8) (7) (2) (4)

Malik
0.5085 0.2297 0.2670 0.2413 0.6853

5.4
(7) (7) (6) (5) (2)

4.1. Challenge Details

AutoML Challenge 2018 has two phases: feedback phase and AutoML challenge phase. In
the feedback phase, five datasets for binary classification (see Table 1) are provided, and
each dataset has training/validation/test datasets. All instances in training dataset are
labeled, and performance measure for validation dataset is posted in the leaderboard of
the feedback phase, after submitting a code or prediction file. In the AutoML challenge
phase, the automated machine learning system that has submitted in the feedback phase
solves five blind datasets for binary classification. Finally, performance measures for those
blind datasets are used to determine challenge winners. More precisely, the performance
measures of all participants for a dataset determine a dataset rank, and an overall rank is
determined by average of all dataset ranks (see Table 2).

A normalized area under the ROC curve (AUC) metric is used to measure performance
of the submitted automated machine learning system. The normalized AUC metric can be
written as

Normalized AUC = 2 ·AUC− 1 (2)

where AUC is computed as a standard AUC metric. Since AUC is bounded in [0.0, 1.0],
the normalized AUC is transformed into [−1.0, 1.0]. Moreover, because every dataset has
its own time budget, the submitted automated machine learning system should finish each
task within the given time budget. Based on the announcement of the challenge organizers,
each submission is executed in the Ubuntu machine which has (i) 2 cores, (ii) 8GB memory,
and (iii) 40GB SSD.

4.2. AutoML Challenge 2018

As shown in Table 2, our automated machine learning system took second place in AutoML
Challenge 2018. Our system showed the normalized AUC scores which took 5th, 2nd, 2nd,

5



AutoML for Soft Voting in an Ensemble of Tree-based Classifiers

9th, and 1st in Set 1, Set 2, Set 3, Set 4, and Set 5, respectively. Additionally, in the
feedback phase, our system ranked first, but was tied with the team, wlWangl.

5. Conclusion

Our automated machine learning system, mlg.postech, using a soft majority voting classifier
with gradient boosting classifier, extra-trees classifier, and random forests classifier took
second place in AutoML Challenge 2018. We could show that Bayesian optimization is
effective to optimize the hyperparameters of the voting classifier with the tree-based classi-
fiers. Especially, we could validate our system could train and test blind datasets without
human intervention.

References

E. Brochu, V. M. Cora, and N. de Freitas. A tutorial on Bayesian optimization of expensive
cost functions, with application to active user modeling and hierarchical reinforcement
learning, 2010. arXiv preprint arXiv:1012.2599.

M. Feurer, A. Klein, K. Eggensperger, J. T. Springenberg, M. Blum, and F. Hutter. Efficient
and robust automated machine learning. In Advances in Neural Information Processing
Systems (NIPS), pages 2962–2970, Montreal, Quebec, Canada, 2015.

I. Guyon, K. Bennett, G. Cawley, H. J. Escalante, S. Escalera, T. K. Ho, N. Macià, B. Ray,
M. Saeed, A. Statnikov, and E. Viegas. Design of the 2015 ChaLearn AutoML Challenge.
In Proceedings of the International Joint Conference on Neural Networks (IJCNN), pages
1–8, Killarney, Ireland, 2015.

I. Guyon, I. Chaabane, H. J. Escalante, S. Escalera, D. Jajetic, J. R. Lloyd, N. Macia,
B. Ray, L. Romaszko, M. Sebag, A. Statnikov, S. Treguer, and E. Viegas. A brief review
of the ChaLearn AutoML Challenge. In International Conference on Machine Learning
Workshop on Automatic Machine Learning, New York, New York, USA, 2016.

F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for gen-
eral algorithm configuration. In Proceedings of the International Conference on Learning
and Intelligent Optimization, pages 507–523, Rome, Italy, 2011.

D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global optimization of expensive
black-box functions. Journal of Global Optimization, 13:455–492, 1998.

J. Kim, J. Jeong, and S. Choi. AutoML Challenge: AutoML framework using random space
partitioning optimizer. In International Conference on Machine Learning Workshop on
Automatic Machine Learning, New York, New York, USA, 2016.

R. Martinez-Cantin, K. Tee, and M. McCourt. Practical Bayesian optimization in the pres-
ence of outliers. In Proceedings of the International Conference on Artificial Intelligence
and Statistics (AISTATS), Playa Blanca, Lanzarote, Canary Islands, 2018.

6



AutoML for Soft Voting in an Ensemble of Tree-based Classifiers

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, et al. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian optimization of machine
learning algorithms. In Advances in Neural Information Processing Systems (NIPS),
volume 25, pages 2951–2959, Lake Tahoe, Nevada, USA, 2012.

J. T. Springenberg, A. Klein, S. Falkner, and F. Hutter. Bayesian optimization with robust
Bayesian neural networks. In Advances in Neural Information Processing Systems (NIPS),
volume 29, pages 4134–4142, Barcelona, Spain, 2016.

N. Srinivas, A. Krause, S. Kakade, and M. Seeger. Gaussian process optimization in the
bandit setting: No regret and experimental design. In Proceedings of the International
Conference on Machine Learning (ICML), pages 1015–1022, Haifa, Israel, 2010.

7


	Introduction
	Background
	Majority Voting
	Bayesian Optimization

	Our Automated Machine Learning System, mlg.postech
	Challenge Result
	Challenge Details
	AutoML Challenge 2018

	Conclusion

